
Software Licenses and
Dependencies

17-313 Fall 2024
Foundations of Software Engineering

https://cmu-17313q.github.io
Eduardo Feo Flushing

https://cmu-17313q.github.io/

• Companies will avoid certain licenses – commonly the copyleft licenses
• Specific licenses may provide competitive advantages
• You may eventually want to release open source software or become

more involved in an open source project

Why learn about licenses?

https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/

Which license to choose?

Activity: Choosing the Appropriate License

● Analyze a given software scenario and select the most appropriate license
from the following: GPL, LGPL, MIT, BSD, Apache.

● In groups of 3-4, read the provided descriptions of a software project and
its goals (e.g., commercial use, community contributions, patent
protections).

● Consider the Key Factors: Discuss with your group the following aspects:
○ Does the project need copyleft protections or permissive terms?
○ Are there concerns about proprietary use or redistribution?
○ Is patent protection important?

● Choose the license that best aligns with the project's requirements and
justify your decision.

GNU General Public License: The Copyleft License

• Nobody should be restricted by the software they use. There are four
freedoms that every user should have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your needs,
● the freedom to share the software with your friends and neighbors,

and
● the freedom to share the changes you make.

• Code must be made available
• Any modifications must be re-licensed under the same license

(copyleft)

GPL 2.0 and 3.0 – Addresses free software problems

• GPLv2
• Court ruling cannot nullify the license and if a court decision and this license contradict in

distribution requirements, then the software cannot be distributed
• Implicitly grants users a license to any patents held by contributors that are required to use

the software.
• GPLv3

• Clarifications on patent grants and prevent “Tivoization”
• TiVo used Linux, licensed under GPLv2, as the operating system for its DVR devices.
• While TiVo complied with GPLv2 by releasing the source code of the Linux modifications they

made, they implemented hardware restrictions:
• The device was designed to run only the software signed with TiVo's cryptographic keys.
• This meant users could view and modify the source code but were unable to run their

modified versions on the TiVo hardware.

• Compatibility issues

MIT License

• Must retain copyright credit
• Software is provided as is
• Authors are not liable for software
• Unlike the GPL, it does not require that derivative works be open source
• No other restrictions

LGPL

• Software must be a library
• Similar to GPL but no copyleft requirement

BSD License

• No liability and provided as is.
• Copyright statement must be included in source and binary
• The copyright holder does not endorse any extensions without explicit

written consent

Apache License

• Similar to MIT with a few differences
•Not copyleft
•Not required to distribute source code
•Does not grant permission to use project’s trademark
•Does not require modifications to use the same license
•Allows proprietary use
• Explicit grant of patent rights

"I am developing a software tool and want to release it with a very
permissive license so others can use, modify, and redistribute it,
even in proprietary projects, with minimal obligations."

"I have a proprietary application but want to use an open-source
library. I need to ensure that I can link the library without being
forced to open-source my application."

"I want to release my software under an open-source license but
ensure that users are granted explicit patent rights to avoid legal
disputes."

"I want to encourage adoption of my open-source software in both
open-source and proprietary ecosystems without imposing strict
copyleft requirements but still ensuring credit for my work."

"I am building an open-source library and want to ensure that
anyone who modifies and redistributes my code must also
open-source their changes."

"I want to release my software under an open-source license that
allows maximum adoption with minimal obligations for users, but I
also want to ensure my name or organization is not used to
promote derived works without permission."

I am building an application that includes both open-source
components (e.g., framework, or API) and proprietary modules. I
want to ensure I can combine these without legally risking the
proprietary aspects of my code."

Dual License Business Model
• Released as GPL which

requires a company using
the open source product to
open source it’s application

• Or companies can pay
$2,000 to $10,000 annually
to receive a copy of MySQL
with a more business
friendly license

Risk: Incompatible Licenses
• Sun open sourced OpenOffice, but when Sun was acquired by Oracle,

Oracle temporarily stopped the project.
• Many of the community contributors banded together and created

LibreOffice
• Oracle eventually released OpenOffice to Apache
• LibreOffice changed the project license so LibreOffice can copy changes

from OpenOffice but OpenOffice cannot do the same due to license
conflicts

What not to do
● Winamp was a popular media player in the late 1990s

and early 2000s
○ Open-source its code to revive community

interest and foster further development and
innovation.

● Source code release inadvertently included
proprietary components from Microsoft, Intel, Dolby,
and the SHOUTcast server software

● The initial release under the "Winamp Collaborative
License" imposed restrictions that contradicted
open-source principles
○ Prohibiting forks and distribution of modified

versions
● Discovery of GPL Code:

○ After releasing the Winamp source code, it was
found to include GPL-licensed components.

Producing Open Source

• Like companies, different project have different:
● Structures
● Cultures
● Organizations

• Many open source projects are supported by a legal entity, such as a
foundation.

Producing Open Source: Governance

• Consensus
● Apache
● Rust
● (many others)

• Dictator
● Python
● Linux

• Corporate

Producing Open Source: Skills
• Written communication

● Email, chat, and design documents are core to asynchronous
work

• “Thick” skin
• Technical ability
• Political ability

Software Dependencies

Left-pad (March 22, 2016)

2
6

Left-pad (March 22, 2016)

2
7

Left-pad (Docs)

2
8

Left-pad (Source Code)

2
9

See also: isArray

3
0

How do software projects manage third-party
dependencies on reusable libraries?

● It’s hard
● It’s mostly a mess (everywhere)
● But it’s critical to modern software development

What is a Dependency?

• Core of what most build systems do
• “Compile” and “Run Tests” is just a fraction of their job

• Examples: Maven, Gradle, NPM, Bazel, …

• Foo->Bar: To build Foo, you may need to have a built version of Bar

• Dependency Scopes:
• Compile: Foo uses classes, functions, etc. defined by Bar
• Runtime: Foo uses an abstract API whose implementation is provided

by Bar (e.g. logging, database, network or other I/O)
• Test: Foo needs Bar only for tests (e.g. JUnit, mocks)

• Internal vs. External Dependencies
• Is Bar also built/maintained by your org or is it pulled from elsewhere

using a package manager?

32

Examples of dependency views

3
3

Where are the dependencies
hosted?

• Typically downloaded from dependency servers:
• Maven Central (https://repo.maven.apache.org/maven2/)
• Ubuntu Packages for Apt (https://packages.ubuntu.com/)
• Python Package Index (https://pypi.org/)]
• NPM Public Registry (https://registry.npmjs.org/)

• Packages need a unique identifier
• Typically a package name (sometimes owner name) and version

• Custom repositories allowed by most package managers
• Often used for company-internal packages or cache mirroring
• Note problems with duplicates (same pkg name in different repositories; some priority order is needed)

• Somebody needs to manage repositories
• Availability: Repository needs to be running
• Access Control: Packages should only be published by owners
• Integrity: Packages should be signed or otherwise verifiable
• Uniqueness and archival: Only one artifact per version
• Traceability: Packages can have metadata pointing to source or tests
• Security: ???

https://repo.maven.apache.org/maven2/
https://packages.ubuntu.com/
https://pypi.org/
https://registry.npmjs.org/

Demo: Deps.dev

Dependency Pinning vs. Floating

● Pinning: ”I depend on libFoo 1.5.0”
• Declares a specific version of the dependency. Frozen in time.

● Floating: “I depend on libFoo-latest”
• Each build will pull the latest available libFoo version
• (Other forms available, e.g. libFoo 1.5.x)

Pinned dependencies requires manual
updates in case of security issues

cookie
0.6.0

cookie
0.7.1

Pinning vs Floating
Pinning Dependencies

(e.g. 1.5.3)

✅ Reproducible builds

❌ Can become vulnerable due to
dependency bugs

❌ Have to keep updating dependents
as dependencies evolve

✅ Stable network effects

Floating Dependencies
(e.g. 1.x)

❌ Flaky builds (breaking changes)

✅ Latest security patches & bug fixes

✅ Less manual maintenance

❌ Floats leak transitively
(A pin to B floating C; then A still sees changing
version of C)

Semantic Versioning
• Widely used convention for versioning releases

• E.g. 1.2.1, 3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rc1
• Format: {MAJOR} . {MINOR} . {PATCH}
• Each component is ordered (numerically, then lexicographically; release-aware)

• 1.2.1 < 1.10.1
• 3.1.0-alpha-1 < 3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

• Contracts:
• MAJOR updated to indicate breaking changes

• Same MAJOR version => backward compatibility

• MINOR updated for additive changes
• Same MINOR version => API compatibility (important for linking)

• PATCH updates functionality without new API
• Ninja edit; usually for bug fixes

• Largely dependent on honor system. No easy way to automatically verify (can you solve it?)

39

https://semver.org/

4
0

People rely on SemVer contracts

4
1

See full thread for an “interesting” example of Open Source governance and communication

https://github.com/celery/celery/issues/5956

